
The Next Generation of Automated
Reasoning Methods

Bart Selman
Cornell University

Joint work with Carla Gomes.

Computational complexity of reasoning
appears to severly limit real-world
applications.

Current reasoning technology

Revisiting the challenge:
Significant progress with new
ideas / tools for dealing with
complexity (scale-up),
uncertainty, and multi-agent
reasoning.

Machine Reasoning (1960-90s)

Objective:

Develop foundations, technology, and tools
to enable effective practical machine
reasoning.

The Quest for Machine Reasoning

Fundamental challenge: Combinatorial Search Spaces

Significant progress in the last decade.

How much?

For propositional reasoning:
-- We went from 100 variables, 200 clauses (early 90’s)

to 1,000,000 vars. and 5,000,000 constraints in
10 years. Search space: from 10^30 to 10^300,000.

-- Applications: Hardware and Software Verification,
Test pattern generation, Planning, Protocol Design,
Routers, Timetabling, E-Commerce (combinatorial
auctions), etc.

How can deal with such large combinatorial spaces and
still do a decent job?

I’ll discuss recent formal insights into
combinatorial search spaces and their
practical implications that makes searching
such ultra-large spaces possible.

Brings together ideas from physics of disordered systems
(spin glasses), combinatorics of random structures, and
algorithms.

But first, what is BIG?

I.e., ((not x_1) or x_7)
((not x_1) or x_6)

etc.

What is BIG?

x_1, x_2, x_3, etc. our Boolean variables
(set to True or False)

Set x_1 to False ??

Consider a real-world Boolean Satisfiability (SAT) problem

I.e., (x_177 or x_169 or x_161 or x_153 …
x_33 or x_25 or x_17 or x_9 or x_1 or (not x_185))

clauses / constraints are getting more interesting…

10 pages later:

…

Note x_1 …

4000 pages later:

…

Finally, 15,000 pages later:

Current SAT solvers solve this instance in
approx. 1 minute!

Combinatorial search space of truth assignments: HOW?

9

Progress SAT Solvers

Instance Posit' 94

ssa2670-136 40,66s

bf1355-638 1805,21s

pret150_25 >3000s

dubois100 >3000s

aim200-2_0-no-1 >3000s

2dlx_..._bug005 >3000s

c6288 >3000s

Grasp' 96

1,2s

0,11s

0,21s

11,85s

0,01s

>3000s

>3000s

Sato' 98

0,95s

0,04s

0,09s

0,08s

0s

>3000s

>3000s

Chaff' 01

0,02s

0,01s

0,01s

0,01s

0s

2,9s

>3000s
Source: Marques Silva 2002

From academically interesting to practically relevant.

We now have regular SAT solver competitions.
Germany ’89, Dimacs ’93, China ’96, SAT-02, SAT-03, SAT-04,

SAT05.

E.g. at SAT-2004 (Vancouver, May 04):
--- 35+ solvers submitted
--- 500+ industrial benchmarks
--- 50,000+ instances available on the WWW.

11

Real-World Reasoning
Tackling inherent computational complexity

100
200

10K
50K

50K
200K

0.5M
1M

1M
5M

Variables

1030

10301,020

10150,500

1015,050

103010

W
or

st
 C

as
e

co
m

pl
ex

ity

Car repair diagnosis

Deep space
mission control

Chess

Hardware/Software
Verification

Multi-Agent
Systems

200K
600K

Military Logistics

Seconds until heat
death of sun

Protein folding
calculation
(petaflop-year)

No. of atoms
on earth 1047

100 10K 20K 100K 1M

Rules (Constraints)Example domains cast in propositional reasoning system (variables, rules).

• High-Performance Reasoning
• Temporal/ uncertainty reasoning
• Strategic reasoning/Multi-player

Technology Targets

DARPA Research
Program

A Journey from Random to Structured
Instances

I --- Random Instances
--- phase transitions and algorithms
--- from physics to computer science

II --- Capturing Problem Structure
--- problem mixtures (tractable / intractable)
--- backdoor variables, restarts, and heavy tails

III --- Beyond Satisfaction
--- sampling, counting, and probabilities
--- quantification

Part I) ---- Random Instances

Easy-Hard-Easy patterns (computational) and
SAT/UNSAT phase transitions (“structural”).

Their study provides an interplay of work from
statistical physics, computer science, and
combinatorics.

We’ll briefly consider “The State of Random 3-SAT”.

(“phase transitions in computational problems”;
also CAM ’04 talk by Jennifer Chayes)

14

Random 3-SAT as of 2005

Random Walk

DP

DP’

Walksat

SP

Linear time algs.

GSAT

Phase
transition

Mitchell, Selman, and Levesque ’92

15

Linear time results --- Random 3-SAT

Random walk up to ratio 1.36 (Alekhnovich and Ben Sasson 03).
empirically up to 2.5

Davis Putnam (DP) up to 3.42 (Kaporis et al. ’02) empirically up to 3.6
exponential, ratio 4.0 and up (Achlioptas and Beame ’02)
approx. 400 vars at phase transition

GSAT up till ratio 3.92 (Selman et al. ’92, Zecchina et al. ‘02)
approx. 1,000 vars at phase transition

Walksat up till ratio 4.1 (empirical, Selman et al. ’93)
approx. 100,000 vars at phase transition

Survey propagation (SP) up till 4.2
(empirical, Mezard, Parisi, Zecchina ’02)
approx. 1,000,000 vars near phase transition

Unsat phase: little algorithmic progress.
Exponential resolution lower-bound (Chvatal and Szemeredi 1988)

16

Linear time results --- Random 3-SAT

Random walk up to ratio 1.36 (Alekhnovich and Ben Sasson 03).
empirically up to 2.5

Davis Putnam (DP) up to 3.42 (Kaporis et al. ’02) empirically up to 3.6
exponential, ratio 4.0 and up (Achlioptas and Beame ’02)
approx. 400 vars at phase transition

GSAT up till ratio 3.92 (Selman et al. ’92, Zecchina et al. ‘02)
approx. 1,000 vars at phase transition

Walksat up till ratio 4.1 (empirical, Selman et al. ’93)
approx. 100,000 vars at phase transition

Survey propagation (SP) up till 4.2
(empirical, Mezard, Parisi, Zecchina ’02)
approx. 1,000,000 vars near phase transition

Unsat phase: little algorithmic progress.
Exponential resolution lower-bound (Chvatal and Szemeredi 1988)

17

Linear time results --- Random 3-SAT

Random walk up to ratio 1.36 (Alekhnovich and Ben Sasson 03).
empirically up to 2.5

Davis Putnam (DP) up to 3.42 (Kaporis et al. ’02) empirically up to 3.6
exponential, ratio 4.0 and up (Achlioptas and Beame ’02)
approx. 400 vars at phase transition

GSAT up till ratio 3.92 (Selman et al. ’92, Zecchina et al. ‘02)
approx. 1,000 vars at phase transition

Walksat up till ratio 4.1 (empirical, Selman et al. ’93)
approx. 100,000 vars at phase transition

Survey propagation (SP) up till 4.2
(empirical, Mezard, Parisi, Zecchina ’02)
approx. 1,000,000 vars near phase transition

Unsat phase: little algorithmic progress.
Exponential resolution lower-bound (Chvatal and Szemeredi 1988)

18

Linear time results --- Random 3-SAT

Random walk up to ratio 1.36 (Alekhnovich and Ben Sasson 03).
empirically up to 2.5

Davis Putnam (DP) up to 3.42 (Kaporis et al. ’02) empirically up to 3.6
exponential, ratio 4.0 and up (Achlioptas and Beame ’02)
approx. 400 vars at phase transition

GSAT up till ratio 3.92 (Selman et al. ’92, Zecchina et al. ‘02)
approx. 1,000 vars at phase transition

Walksat up till ratio 4.1 (empirical, Selman et al. ’93)
approx. 100,000 vars at phase transition

Survey propagation (SP) up till 4.2
(empirical, Mezard, Parisi, Zecchina ’02)
approx. 1,000,000 vars near phase transition

Unsat phase: little algorithmic progress.
Exponential resolution lower-bound (Chvatal and Szemeredi 1988)

19

Random 3-SAT as of 2004

Random Walk

DP

DP’

Walksat

SP

Linear time algs.

GSAT

Upper bounds
by combinatorial

arguments
(’92 – ’05)

5.19

5.081

4.762

4.596

4.506

4.601

4.643

20

21

22

23

Exact Location of Threshold
Surprisingly challenging problem ...
Current rigorously proved results:
3SAT threshold lies between 3.42 and 4.506.

Motwani et al. 1994; Broder et al. 1992;
Frieze and Suen 1996; Dubois 1990, 1997;
Kirousis et al. 1995; Friedgut 1997;
Archlioptas et al. 1999;
Beame, Karp, Pitassi, and Saks 1998;
Impagliazzo and Paturi 1999; Bollobas,
Borgs, Chayes, Han Kim, and
Wilson1999; Achlioptas, Beame and
Molloy 2001; Frieze 2001; Zecchina et al. 2002;
Kirousis et al. 2004; Gomes and Selman, Nature ’05;
Achlioptas et al. Nature ’05; and ongoing…

Empirical: 4.25 --- Mitchell, Selman, and Levesque ’92, Crawford ’93.

From Physics to Computer Science
Exploits correspondence between SAT and physical
systems with many interacting particles.

Basic model for magnetism: The Ising model (Ising ’24). Spins are
“trying to align themselves”. But system can be “frustrated” some pairs
want to align; some want to point in the opposite direction of each other.

)(() jiji xxxx Ú¬Ù¬Ú

:align want to and spin e.g. ji xx

Satisfied iff [(x_i = 1 and x_j =1) OR (x_i =0 and x_j=0)]

We can now assign a probability distribution over the assignments/
states --- the Boltzmann distribution:

Prob(S) = 1/Z * exp(- E(S) / kT)
where,

E is the “energy” = # unsatisfied constraints,
T is the “temperature” a control parameter,
k is the Boltzmann constant, and
Z is the “partition function” (normalizes).

Distribution has a physical interpretation (captures thermodynamic
equilibrium) but, for us, key property:

With T à 0, only minimum energy states have non-zero
probability. So, by taking T à 0, we can find properties of the
satisfying assignments of the SAT problem.

In fact, partition function Z, contains all necessary information.

Z = ∑ exp (- E(S)/kT)

sum is over all 2N possible states / (truth) assignments.

Are we really making progress here??
Sum over an exponential number of terms, 2N... in physics, N ~ 1023.

Fortunately, physicists have been studying “Z” for 100+ years.
(Feynman Lectures: “Statistical physics = study of Z”.)

They have developed a powerful set of analytical tools to calculate /
approximate Z : e.g. mean field approximations, Monte Carlo methods,
matrix transfer methods, renormalization techniques, replica methods
and cavity methods.

Physics contributing to computation
80’s --- Simulated annealing

General combinatorial search technique, inspired by physics.
(Kirkpatrick ’83)

90’s --- Phase transitions in computational systems
Discovery of physical laws and phenomena (e.g. 1st and 2nd

order transitions) in computational systems.
Cheeseman et al. ’91; Mitchell et al. ’92;
Explicit connection to physics:
Kirkpatrick and Selman ’94 (finite-size scaling);
Monasson et al.’99. (order phase transition))

’02 --- Survey Propagation
Analytical tool from statistical physics leads to powerful
algorithmic method. (Mezard et al. ’02).

More expected!

Physics contributing to computation
80’s --- Simulated annealing

General combinatorial search technique, inspired by physics.
(Kirkpatrick et al., Science ’83)

90’s --- Phase transitions in computational systems
Discovery of physical laws and phenomena (e.g. 1st and 2nd

order transitions) in computational systems.
(Cheeseman et al. ’91; Selman et al. ’92;
Explicit connection to physics:
Kirkpatrick and Selman, Science ’94 (finite-size scaling);
Monasson et al., Nature ’99. (order of phase transition))

’02 --- Survey Propagation
Analytical tool from statistical physics leads to powerful
algorithmic method. (Mezard et al., Science ’02).

More expected!

A Journey from Random to Structured
Instances

I --- Random Instances
--- phase transitions and algorithms
--- from physics to computer science

II --- Capturing Problem Structure
--- problem mixtures (tractable / intractable)
--- backdoor variables, restarts, and heavy-tails

III --- Beyond Satisfaction
--- sampling, counting, and probabilities
--- quantification

ü

31

Part II) --- Capturing Problem Structure

Results and algorithms for hard random k-SAT
problems have had significant impact on
development of practical SAT solvers. However…

Next challenge: Dealing with SAT problems with
more inherent structure.

Topics (with lots of room for further analysis):
A) Mixtures of tractable/intractable stucture
B) Backdoor variables and heavy tails

32

II A) Mixtures: The 2+p-SAT problem

Motivation: Most real-world computational
problems involve some mix of tractable
and intractable sub-problems.

Study: mixture of binary and ternary clauses
p = fraction ternary
p = 0.0 --- 2-SAT / p = 1.0 --- 3-SAT

What happens in between?

33

Phase transitions (as expected…)

Computational properties (surprise…)

(Monasson, Zecchina, Kirkpatrick, Selman, Troyansky 1999.)

Phase Transition for 2+p-SAT

We have good approximations for location of thresholds.

Computational Cost: 2+p-SAT
Tractable substructure can dominate!

> 40% 3-SAT --- exponential scaling

<= 40% 3-SAT --- linear scaling

Mixing 2-SAT (tractable)
& 3-SAT (intractable) clauses.

(Monasson et al. 99; Achlioptas ‘00)

M
ed

iu
m

 c
os

t

Num variables

36

Results for 2+p-SAT

p < = 0.4 --- model behaves as 2-SAT
search proc. “sees” only binary constraints
smooth, continuous phase transition (2nd order)

p > 0.4 --- behaves as 3-SAT (exponential scaling)
abrupt, discontinuous transition (1st order)

Note: problem is NP-complete for any p > 0.

Lesson learned

In a worst-case intractable problem --- such
as 2+p-SAT --- having a sufficient amount of
tractable problem substructure (possibly
hidden) can lead to provably poly-time average
case behavior.

Next:
Capturing hidden problem structure.
(Gomes et al. 03, 04)

38

II B) --- Backdoors to the real-world

(Gomes et al. 1998; 2000)

Observation: Complete backtrack style search SAT
solvers (e.g. DPLL) display a remarkably wide range
of run times.

Even when repeatedly solving the same problem instance;
variable branching is choice randomized.

Run time distributions are often “heavy-tailed”.

Orders of magnitude difference in run time on
different runs.

Number backtracks (log)

Un
sol

ved
 fr

ac
tio

n

Heavy-tails on structured problems
50% runs:
solved with
1 backtrack

10% runs:
> 100,000
backtracks

100,0001

40

Randomized Restarts

Solution: randomize the backtrack strategy
Add noise to the heuristic branching (variable

choice) function
Cutoff and restart search after a fixed number of

backtracks

Provably Eliminates heavy tails

In practice: rapid restarts with low cutoff can dramatically
improve performance
(Gomes et al. 1998, 1999)

Exploited in many current SAT solvers combined
with clause learning and non-chronological backtracking.
(Chaff etc.)

Restarts on Planning Problem
Consider simple fixed policy:

Restart search if run-time is greater than x
Order magnitude speedup.

1000

10000

100000

1000000

1 10 100 1000 10000 100000 1000000

log(cutoff)

lo
g

(b
ac

kt
ra

ck
s

)

Ti
m

e
to

 S
ol

ut
io

n

Time expended before restart

42

Deterministic

Logistics Planning 108 mins. 95 sec.
Scheduling 14 411 sec 250 sec

(*) not found after 2 days

Scheduling 16 ---(*) 1.4 hours
Scheduling 18 ---(*) ~18 hrs
Circuit Synthesis 1 ---(*) 165sec.
Circuit Synthesis 2 ---(*) 17min.

Sample Results Random Restarts

R
3

T - the number of leaf nodes visited up to and including
the successful node; b - branching factor

0)1(][³-== iippibTP

Formal Model Yielding
Heavy-Tailed Behavior

b = 2
(Chen, Gomes, and Selman ’01; Williams, Gomes, and Selman‘03)

p = probability wrong
branching choice.

2^k time to recover
from k wrong choices.

(heavy-tailed distribution)

44

Expected Run Time
(infinite expected time)

Variance

(infinite variance)

Tail

(heavy-tailed)

Balancing exponential decay in making wrong branching
decisions with exponential growth in cost of mistakes.
(related to sequential de-coding, Berlekamp et al. 1972)

¥®³][1 TEbp

¥®>][2
1 TV
b

p

2][2
1 <>>³ aaLCLTP
b

p

Intuitively: Exponential penalties hidden in backtrack
search, consisting of large inconsistent subtrees in
the search space.

But, for restarts to be effective, you also need
short runs.

Where do short runs come from?

Explaining short runs:
Backdoors to tractability

Informally:

A backdoor to a given problem is a subset of the variables such
that once they are assigned values, the polynomial propagation
mechanism of the SAT solver solves the remaining formula.

Formal definition includes the notion of a “subsolver”:
a polynomial simplification procedure with certain general
characteristics found in current DPLL SAT solvers.

Backdoors correspond to “clever reasoning shortcuts” in the
search space.

Backdoors (wrt subsolver A; SAT case):

Strong backdoors (wrt subsolver A; UNSAT case):

Note: Notion of backdoor is related to but different from
constraint-graph based notions such as cutsets. (Dechter 1990; 2000)

Explaining short runs:
Backdoors to tractability

Informally:

A backdoor to a given problem is a subset of the variables such
that once they are assigned values, the polynomial propagation
mechanism of the SAT solver solves the remaining formula.

Formal definition includes the notion of a “subsolver”:
a polynomial simplification procedure with certain general
characteristics found in current DPLL SAT solvers.

Backdoors correspond to “clever reasoning shorcuts” in the
search space.

Backdoors can be surprisingly small:

Most recent: Other combinatorial domains. E.g. graphplan planning,
near constant size backdoors (2 or 3 variables) and log(n) size
in certain domains. (Hoffmann, Gomes, Selman ’04)

Backdoors capture critical problem resources (bottlenecks).

Backdoors --- “seeing is believing”

Logistics_b.cnf planning formula.
843 vars, 7,301 clauses, approx min backdoor 16

(backdoor set = reasoning shortcut)

Constraint graph of
reasoning problem.
One node per variable:
edge between two variables
if they share a constraint.

Visualization by Anand Kapur.

Logistics.b.cnf after setting 5 backdoor vars.

After setting just 12 (out of 800+) backdoor vars – problem almost solved.

MAP-6-7.cnf infeasible planning instances. Strong backdoor of size 3.
392 vars, 2,578 clauses.

Another example

After setting 2 (out of 392) backdoor vars. ---
reducing problem complexity in just a few steps!

Inductive inference problem --- ii16a1.cnf. 1650 vars, 19,368 clauses.
Backdoor size 40.

Last example.

After setting 6 backdoor vars.

After setting 38 (out of 1600+)
backdoor vars:

Some other intermediate stages:

So: Real-world structure
hidden in the network.

Can be exploited by
automated reasoning

engines.

But… we also need to take into account the
cost of finding the backdoor!

We considered:
Generalized Iterative Deepening
Randomized Generalized Iterative Deepening
Variable and value selection heuristics

(as in current solvers)

(Williams, Gomes, and Selman ’04)

Current
solvers

Size
backdoor

n = num. vars.
k is a constant

Dynamic view: Running SAT solver
(no backdoor detection)

SAT solver detects backdoor set

A Journey from Random to Structured
Instances

I --- Random Instances
--- phase transitions and algorithms

II --- Capturing Problem Structure
--- problem mixtures (tractable / intractable)
--- backdoor variables and heavy tails

III --- Beyond Satisfaction
--- sampling, counting, and probabilities
--- quantifiers

ü

ü

63

Part III) --- Beyond Satisfaction
Can we extend SAT/CSP techniques to solve harder

counting/sampling problems?

Such an extension would lead us to a wide range of new
applications.

SAT testing counting/sampling

logic inference probabilistic reasoning

NP / co-NP-complete #P-complete

Note: counting solutions and sampling solutions are
computationally near equivalent.

Related work: Kautz et al. ’04; Bacchus et al. ’03; Darwich ’04 & ’05; Littman ‘03.

64

Standard Methods for Sampling: Markov
Chain Monte Carlo (MCMC)

Based on setting up a Markov chain with a predefined
stationary distribution.

E.g. simulated annealing.

Draw samples from the stationary distribution by running
the Markov chain for a sufficiently long time.

Problem: for interesting problems, Markov chain takes
exponential time to converge to its stationary
distribution.

Bottom line: standard MCMC (e.g. SA) too slow.

65

First attempt

Use local search style algorithm:

Biased random walk = a random walk with greedy bias.

Example: WalkSat (Selman et al, 1993), effective on SAT.

Can we use it to sample from solution space?

– Does WalkSat reach all solutions?

– How uniform/non-uniform is the sampling?

(Wei Wei and Selman ’04)

WalkSat

visited 500,000 times

visited 60 times

Hamming distance

2,500 solutions

50,000,000 runs

All solns reached
but

quite nonuniform!

Probability Ranges for Different Domains

Instance Runs Hits
Rarest

Hits
Common

Common-to -
Rare Ratio

Random 50 ´ 106 53 9 ´ 105 1.7 ´ 104

Logistics 1 ´ 106 84 4 ´ 103 50

Verif. 1 ´ 106 45 318 7

Improving the Uniformity of Sampling

SampleSat:
With probability p, the algorithm makes a biased random

walk move
With probability 1-p, the algorithm makes a SA (simulated

annealing) move

WalkSat

Nonergodic

Quickly reach sinks

Ergodic

Slow convergence

Ergodic

But does not satisfy DBC

SA = SampleSat+

69

Comparison Between WalkSat and
SampleSat

WalkSat SampleSat

104
10

WalkSat

Hamming distance

SampleSat

Hamming Distance

SampleSAT

Note:
Uniform sampling

within clusters.

Instance Runs Hits
Rarest

Hits
Common

Common-to -
Rare Ratio

WalkSat

Ratio
SampleSat

Random 50 ´ 106 53 9 ´ 105 1.7 ´ 104 10

Logistics 1 ´ 106 84 4 ´ 103 50 17

Verif. 1 ´ 106 45 318 7 4

Formal results, see Wei Wei and Selman (‘04).

Verification on Larger formulas -
ApproxCount

Small formulas à Use solution frequencies.
How to verify on large formulas (e.g. 10^25 solns)?

A solution sampling procedure can be used to
(approximately) count the number of satisfying
assignments. (Jerrum and Valiant ’86)

instance #variables #solutions ApproxCount Average
Error / var

P(30,20) 600 7 ´ 1025 7 ´ 1024 0.4%

P(20,10) 200 7 ´ 1011 2 ´ 1011 0.6%

instance #variables Exact
count

ApproxCount Average
Error / var

prob004-log-a 1790 2.6 ´ 1016 1.4 ´ 1016 0.03%
wff.3.200.810 200 3.6 ´ 1012 3.0 ´ 1012 0.09%
dp02s02.shuffled 319 1.5 ´ 1025 1.2 ´ 1025 0.07%

Comparison to exact counting (DPLL-style).

Beyond exact model counters

Summary: Counting & Sampling

Results show potential for modified SAT (CSP?) solvers
(local search) for counting / sampling solutions.

Can handle solution spaces with 10^25 and more
solutions.

Range of potential applications: e.g. many forms of
probabilistic (Bayesian) reasoning.

Part III b) Quantified Reasoning
Quantified Boolean Formulas (QBF) extend Boolean logic by
allowing quantification over variables (exists and forall)

QBF is satisfiable iff
there exists a way of setting the existential vars such that for every
possible assigment to the universal vars the clauses are satisfied.

Literally a “game played on the clauses”:

Existential player tries hard to satisfy all clauses in the matrix.

Universal player tries hard to “spoil” it for the existential player: i.e.,
break (“unsatisfy”) one or more clauses.

)]()[(00110 hhhhj bbbbbbbb ¬Ú¬Ù¬Ú$""$ ++ !!!

the clausesQuantifiers prefix

Formally: Problem is PSPACE- complete.

Range of new applications: Multi-agent reasoning, unbounded
planning, unbounded model-checking (verification), and
certain forms probabilistic reasoning and contingency planning.

Can we transfer successful SAT techniques to QBF?

Cautiously optimistic. But very sensitive to problem encodings.
(Antsotegui, Gomes, and Selman ’05)

Related work: Walsh ’03; Gent, Nightingale, and Stergiou ’05; Pan & Vardi 04;
Giunchiglia et al. 04; Malik 04; and Williams ’05.

The Achilles’ Heel of QBF
QBF is much more sensitive to problem encoding.

SAT/QBF encodings require auxiliary variables.
These variables significantly increase the raw combinatorial
search space.

Not an issue for SAT: Propagation forces search to stay
within combinatorial space of original task.

Not so for QBF! Universal player pushes to violate
domain constraints (trying to violate one or
more clauses). Search leads quickly outside of
search space of original problems.

Unless, encodings are carefully engineered.

Original
Search Space

2N

Search Space
SAT Encoding

2N+M

Space Searched
by SAT Solvers

2N/C ; Nlog(N); Poly(N)

Original
2N

Search Space for SAT Approaches

Original
Search Space

2N

Search Space
QBF Encoding

2N+M’

Space Searched
by COND QBF Solvers

with Streamlining

Search Space of QBF
Search Space

Standard QBF Encoding
2N+M’’

Original
2N

Summary
We journeyed from random to structured combinatorial

reasoning problems.

Path from 100 var instances (early 90’s) to
1,000,000 var instances (current).

Still moving forward!

Random instances:
--- linear time algs. approaching phase transition.
--- physics methods for computer science

Structure: --- mixture tractable / intractable (2+P-SAT)
--- backdoor sets, randomization, and restarts.

Beyond satisfaction: Potential for sampling, counting, and
quantification.

Overall, significant progress in reasoning technology in last decade.

Research provides an active interplay between algorithm design,
analysis, and experimenation; between computer scientists, physicists,
and mathematicians.

Emerging Application Strategy: Automated reasoning tools as a true
“cognitive assistant”.

E.g., In hardware design (IBM), portfolio of reasoning engines running in
parallel providing real-time feedback to hardware designers and testers

The human design creativity is complemented with automated
validation and feedback, which enables the analysis of subtle
interactions in large-scale complex artifacts.

Realizing the dream of “automated reasoning”.

Thanks to Carla!

The end. JL

84

D) Lessons Learned

General theme:
2+p-SAT results & rapid restart strategies suggest
that hidden tractable sub-structure in formulas can dramatically
reduce overall complexity.

Current SAT solvers:

Carefully balance cost of search for hidden special
structure (e.g. 2-SAT, Horn etc.) and cost of unrestricted search.

85

Strategies:
1) Discovering structure / Clause learning ---

clauses are implied (“lemmas”)
challenge: find the right ones.
a) Chaff solver: store lots of them (millions) and

use clever indexing.
b) Random walk procedures:

store only long range dependencies.

2) Use randomization, restarts and heuristics
to find “backdoor variables”

3) Learn new concepts (new variables) --- very
challenging in general domains.
(for SATPlan, Huang, Kautz, and Selman 1999)

1.) Example of adding derived
dependencies

Random walk (RW) procedure:
1) Pick random truth assignment.
2) Repeat until all clauses are satisfied:

Flip random variable from unsatisfied clause.

Solves 2SAT in O(n^2) flips. (Papadimitriou 1992)

Why? Very elegant argument.

87

We have an unbiased random walk with a reflecting (max
Hamming distance) and an absorbing barrier (satisfying
assignment) at distance 0.

We start at a Hamming distance of approx. ½ N.

Property of unbiased random walks: after n^2 flips, with high
probability, we will hit the origin (the satisfying assignment).

So, O(n^2) randomized algorithm (worst-case!) for 2-SAT.

Satisfying assignment

88

Unfortunately, does not work for k-SAT with
k>= 3. L

Still, Schoening (1999) shows that for 3-SAT, Rapid Random
Restarts of RW of 3N steps, gives an improved exponential
time algorithm. O(1.334^N) vs. O(2^n) for the obvious
search strategy. Best known worst-case bound for 3-SAT
(some recent improvements).

Can we make RW practical for SAT?

Yes. Use a biased random walk procedure

WalkSat Procedure (Selman, Kautz, and Cohen 1993)

Repeatedly select an unsatisfied clause:
1) With probability p, flip a randomly selected variable in

clause (i.e. the “usual”).
2) With probability 1-p, flip greedily, i.e. flip variable in

clause that yields greatest number
of satisfied clauses (I.e., we introduce greedy bias).

90

First, bringing out the worst in random walks…
(2-SAT)

X1 à X2

X2à X3

X3 à X4
Xn à X4

Xn à X1

Note: Only 2 satisfying assignments, all False and all True.

91

Adding redundant clauses / constraints, reduces
run time of Walksat from N^2 down to N^1.1 (empirical).
Derived clauses capture long range dependencies.

92

What about 3-SAT? Again, consider “chain” formulas.

X1 & X2 à X3

X2 & X3 à X4

X_(n-2) & X_(n-1) à X_n

X1 & X2

X1 & X2

X_floor(n/2) & X_(n-1) à X_n

93

Note: Thm. 2. Exponential behavior of RW. Not surprising
perhaps.

But, Thm. 3, with longer range dependencies in formula,
we get poly and quasi-poly behavior!

First, tractable class of 3-SAT problems for Random Walk.

94

Results suggest: Adding implied long range dependencies
can significantly speed up RW and Walksat style procedures.

\alpha is redundancy rate

Formulas from hardware verification benchmark
(Bryant and Velev 2001)

(Wei Wei and Selman ’02)

Summary

During the past few years, we have obtained a much
better understanding of the nature of
computationally hard problems (“phase transitions”)

Rich interactions between
statistical physics, computer science and mathematics,

and between
theory, experiments, and applications.

Summary, cont.

Clear algorithmic progress (SAT solvers) ---
1 million vars & 5 million clauses
Still discovering new applications!

Strategies for exploiting hidden structure:
restarts (“hunting for backdoors”)
adding long range dependencies (speeds up random walks)
clause learning
add new variables / concepts --- an open challenge

Other directions:
model counting / sampling
QBF
Survey propagation / Belief propagation methods

Ratio of Clauses-to-Variable
Mitchell, Selman, and Levesque 1991

3000

4000

98

3-SAT

99

Random 3-SAT as of 2004

Random Walk

DP

DP’

Walksat

SP

Linear time algs.

GSAT

100

Random 3-SAT as of 2004

Random Walk

DP

DP’

Walksat

SP

Linear time algs.

GSAT

Satisfiable phase

Unsatisfiable phase

101

Refines (completes?) our understanding of
combinatorial search space in random k-SAT.

In particular, p<= 0.4, solutions are clustered
together at the bottom of the bowl-shaped
energy landscape.

GSAT / zero temperature annealing can reach
solutions easily (poly time).

Above p>0.4, critical (backbone) variables
emerge. Solution space breaks up into small
clusters (exponentially many) with diameter
small compared to inter-cluster diameter.

Solution: use cavity field method from statistical
physics. (Mezard et al. Science, 2002. Achlioptas et.
al.; Gomes & Selman, Nature ’05.)

Physics contributing to computation

80’s --- Simulated annealing
General combinatorial search technique, inspired by physics.
(Kirkpatric, Science ’83)

90’s --- Phase transitions in computational systems
Discovery of physical laws and phenomena (e.g. 1st and 2nd

order transitions) in computational systems.
(Kirkpatrick and Selman, Science ’94; Monasson et al. Nature ’99.)

’02 --- Survey Propagation
Analytical tool from statistical physics leads to powerful
algorithmic method. (Mezard et al., Science ’02).

More expected!

Explaining short runs:
Backdoors to tractability

Informally:

A backdoor to a given problem is a subset of the variables such
that once they are assigned values, the polynomial propagation
mechanism of the SAT solver solves the remaining formula.

Formal definition includes the notion of a “subsolver”:
a polynomial simplification procedure with certain general
characteristics found in current DPLL SAT solvers.

Note: Notion of backdoor is related to but different from
constraint-graph based notions such as cutsets.
(Dechter 1990; 2000)

Backdoors correspond to “clever reasoning shorcuts” in the
search space.

104

Decay of Distributions

Standard --- Exponential Decay
e.g. Normal:

Heavy-Tailed --- Power Law Decay
e.g. Pareto-Levy:

Pr[] , ,X x Ce x for someC x> » - > >2 0 1

Pr[] ,X x Cx x> = - >a 0

105

Real-World Reasoning
Tackling inherent computational complexity

100
200

10K
50K

50K
200K

0.5M
1M

1M
5M

Variables

1030

10301,020

10150,500

1015,050

103010

W
or

st
 C

as
e

co
m

pl
ex

ity

Car repair diagnosis

Deep space
mission control

Chess

Hardware/Software
Verification

Multi-Agent
Systems

200K
600K

Military Logistics

Seconds until heat
death of sun

Protein folding
calculation
(petaflop-year)

No. of atoms
on earth 1047

100 10K 20K 100K 1M

Rules (Constraints)Example domains cast in propositional reasoning system (variables, rules).

• High-Performance Reasoning
• Temporal/ uncertainty reasoning
• Strategic reasoning/Multi-player

Technology Targets

DARPA Research
Program

